Modeling Committee Update

OTC Fall Meeting

Wilmington, DE November 10, 2011

Overview

- 1. Where are we now?
 - Ozone Season Update
- 2. Where are we going?
 - Level 2 Screening Results
- 3. Emission Inventory Projections
 - Update on Emissions Inventory development
- 4. What we need to do to get there?
 - Projected attainment dates of 2015 and 2018
 - Emissions Inventory Comparison

Where are we now?

1 – OZONE SEASON UPDATE

Preliminary 2011 Design Values in the OTR

Simplified Representation

How Design Values Changed

Of the Past 4 Years 2009 was an Exceptionally Clean Year

Annual 4th High Ozone Values for the 3 Design Value Years – 2009, 2010 and 2011

Grey shaded area highlights general areas greater than 75 ppb ozone

Hypothetical 2012 Design Values

2 – SCREENING MODELING UPDATE

Where are we going?

Screening Runs

- 1. 2007 Base Case
- 2. 2020 "Scenario 4" Control Case (Approximates OTC Recommendations)
- 3. 2020 Bounding Cases
 - A. 10% <u>Less</u> NO_X Reductions Compared to "Scenario 4" (N48/V23: 48% NO_X/23% VOC Reduction)
 - B. 10% More NO_X Reductions Compared to "Scenario 4" (N68/V23: 68% NO_X/23% VOC Reduction)
 - For bounding runs, reductions were applied uniformly to all sectors and entire modeling domain

Caveats:

Not final emission inventories for:

- Mobile & EGU sectors in the OTR
- All sectors outside the OTR
- Modeling domain boundary conditions

Summary of 2020 "Scenario 4"

 Approximates OTC's recommendations for onroad mobile and EGUs

Uses best available 2020 data except where noted

Domain-Wide NO_x Reductions

- EGU: 65% from 2007
 - Estimate of OTC recommended 900,000 ton cap
- Onroad: 70% from 2007
 - Estimate of Tier 2 fleet turnover & LEV3

Domain-Wide VOC Reductions

30% EGU & On-road sectors from 2007

OTR Only: Extra 5% NO_x

Comparison of Annual NO_X Emissions

"Scenario 4" Bounding Predicted DVs (2020)

Relative Ozone Reductions (2020)

- Ozone reductions from "Scenario 4" run generally between 15 and 25% from the base case
- NO_{χ} focused emission reductions show less benefit for urban core areas

Monitors at Nonattainment Levels - 2020

Number of Monitors in the OTR Predicted to Exceed Varying Thresholds

	Base	N48/V23	Sc. 4	N68/V23
85 ppb (Mod.)	21	0	0	0
75 ppb (Mar.)	120	5	1	1
70 ppb	163	21	8	2
65 ppb	186	61	24	8
Monitors in OTR	194	192	192	192

- Hot spots for "Scenario 4" remain near New York and Philadelphia
 - In N48/V23 (10% less NO_X reductions), more hot spots remain from Philadelphia to Massachusetts
 - N68/V23 (10% more NO_X reductions), hot spots are reduced to just the metro New York City area

Selected Screening Run Design Values

			2020		
Monitor		2005–09	N48/V23	Sc. 4	N68/V23
Bayonne	NJ	85	82	80	76
White Plains	NY	86	77	73	69
Camden	NJ	88	77	73	67
Bristol	PA	90	77	72	66
Greenwich	СТ	86	76	72	66
Babylon	NY	88	75	71	65
NEA	PA	88	75	70	64
NYC-Queens	NY	86	74	72	71
Clarksboro	NJ	86	74	69	63
•••					
Edgewood	MD	91	71	66	57
Chicopee	MA	88	70	65	58

Level 2 Screening Conclusions

- Model Performance: Very good but the model somewhat over-predicts peak observed ozone concentrations
 - Accounted for with relative reduction factor method
- "Scenario 4" sensitivity simulation generally yields reduction factors between 0.75 – 0.85 (15 to 25% ozone reduction)
 - Lower reductions in core urban areas
- Only "Bayonne, NJ" monitor with predicted ozone above 75 ppb

Level 3 Screening Planning

- Updates to:
 - New version of CMAQ and CB05 chemistry
 - ERTAC 2020 EGU Emissions Inventory
 - Updated MOVES Modeling
 - Updated emissions of other regions
 - Improved boundary conditions
- Future screening may include 2017 Scenarios

Emission Inventory Update

Calculation of Emission Inventory for SIP Modeling

Emissions Inventory Work Underway

- Model Base 2007/17/20 Inventory Updates
 - Includes current emission reduction programs and those "On the Books"
 - MOVES model bugs have hopefully been corrected and updated modeling now underway
 - Includes emission factors for 2007 for use with ERTAC model inventory projections
- Controlled 2020 Inventory Scenario
 - Includes Regional Measures Adopted by OTC, but not necessarily adopted by the states yet
 - Measures are anticipated but not binding
 - Emissions after application of control measures still need to be generated

ERTAC: Status

- Coding still underway behind schedule
- Remaining tasks for code development:
 - Input files QA ERTAC Committee
 - Complete alpha version of code, testing on small scale data sets
 - Run large-scale data sets to test code performance.
 - Fix any discovered bugs
 - Draft and finalize documentation.
- Remaining task next year
 - Run model to obtain projected year emission estimates.

Estimated Inventory Development Status

Sector	2007 Base	2020 Base	2020 Control
EGU Point	Complete (V2)	Complete (V2)	Early 2012
Non-EGU Point	Complete (V2)	Complete (V2)	Early 2012
On-Road Mobile	Complete (V1)	Nov 2011	N/A
Non-Road Mobile	Complete (V2)	Complete (V2)	N/A
Area	Complete (V2)	Complete (V2)	Early 2012
LADCO - Midwest	Complete*	Proxy	Proxy
SESARM - Southeast	Proxy	Proxy	Proxy

* LADCO inventory is complete, but must be converted to CMAQ format to be useable.

What we need to do to get there?

Attainment Options for 2015 and 2018

Why 2015 & 2018?

- EPA is expected to issue final designations for 2008 NAAQS nonattainment areas in the Spring of 2012
- EPA is expected to require clean data for
 - Marginal areas from 2013-2015
 - Moderate areas from 2016-2018
- 2020 modeling for "Scenario 4" shows a potential pathway for ozone attainment for a 75ppb NAAQS

Locations Facing Potential 2015/2018 Attainment Dates (2011 DV)

Interpolation of Annual NO_X Emissions

Estimated Areas Above 75ppb

Based on 2020 (N48/V23) Bounding Run

Conclusions

- There are not enough projected emission reductions for many potential Marginal or Moderate nonattainment areas to meet their projected attainment dates
- Estimated NO_X Emissions in the OTR exceed Scenario 4 2020 levels by:
 - 23% in 2015
 - 16% in 2018
- Emission reductions may need to "speed up" to get clean data in all OTR locations by this new timeframe

QUESTIONS OR COMMENTS?